Learning and Behavior

James E. Mazur

Learning and Behavior

This book reviews how people and animals learn and how their behaviors are changed as a result of learning. It describes the most important principles, theories, controversies, and experiments that pertain to learning and behavior that are applicable to diverse species and different learning situations. Both classic studies and recent trends and developments are explored, providing a comprehensive survey of the field. Although the behavioral approach is emphasized, many cognitive theories are covered as well, along with a chapter on comparative cognition. Real-world examples and analogies make the concepts and theories more concrete and relevant to students. In addition, most chapters provide examples of how the principles covered have been applied in behavior modification and therapy. Thoroughly updated, each chapter features many new studies and references that reflect recent developments in the field. Learning objectives, bold-faced key terms, practice quizzes, a chapter summary, review questions, and a glossary are included.

The volume is intended for undergraduate or graduate courses in psychology of learning, (human) learning, introduction to learning, learning processes, animal behavior, (principles of) learning and behavior, conditioning and learning, learning and motivation, experimental analysis of behavior, behaviorism, and behavior analysis.

Highlights of the new edition include:

- A new text design with more illustrations, photos, and tables;
- In the Media, Spotlight on Research, and Applying the Research boxes that highlight recent applications of learning principles in psychology, education, sports, and the workplace;
- Discussions of recent developments in the growing field of neuroscience;
- Coverage of various theoretical perspectives to the study of learning—behavioral, cognitive, and physiological;
- Expanded coverage of emerging topics such as the behavioral economics of addictions, disordered gambling, and impulsivity;
- New examples, references, and research studies to ensure students are introduced to the latest developments in the field;
- A website at www.routledge.com/cw/Mazur where instructors will find a test bank, PowerPoint slides, and Internet links. Students will find practice quizzes, definitions of key terms, chapter outlines, and Internet sources for additional information.

James E. Mazur is Emeritus Professor of Psychology at Southern Connecticut State University, USA.

Learning and Behavior

Eighth Edition

James E. Mazur

Eighth edition published 2017 by Routledge 711 Third Avenue, New York, NY 10017

and by Routledge 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

Routledge is an imprint of the Taylor & Francis Group, an informa business

© 2017 Taylor & Francis

The right of James E. Mazur to be identified as the author of this work has been asserted by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

First edition published 1990 by Prentice-Hall Seventh edition published 2012 by Taylor & Francis

Library of Congress Cataloging in Publication Data Names: Mazur, James E., 1951– author. Title: Learning and behavior / James E. Mazur. Description: Eighth edition. | New York, NY : Routledge, 2017. | Includes bibliographical references and index. Identifiers: LCCN 2016026434 | ISBN 9781138689947 (hardback : alk. paper) Subjects: LCSH: Learning, Psychology of. | Conditioned response. | Behavior modification. | Psychology, Comparative. Classification: LCC BF318 .M38 2017 | DDC 153.1/5—dc23 LC record available at https://lccn.loc.gov/2016026434

ISBN: 978-1-138-68994-7 (hbk) ISBN: 978-1-315-45028-5 (ebk)

Typeset in Bembo and Helvetica Neue by Apex CoVantage, LLC

In memory of my parents, Ann and Lou Mazur, who responded to my early interests in science with encouragement, understanding, and patience.

Contents

Preface		xvii
Abo	About the Author	
1	History Reckargund and Resis Concents	1
I	History, Dackground, and Dasic Concepts	1
2	Innate Behavior Patterns and Habituation	29
3	Basic Principles of Classical Conditioning	56
4	Theories and Research on Classical Conditioning	84
5	Basic Principles of Operant Conditioning	113
6	Reinforcement Schedules: Experimental Analyses and Applications	142
7	Avoidance and Punishment	172
8	Theories and Research on Operant Conditioning	201
9	Stimulus Control and Concept Learning	231
10	Comparative Cognition	261
11	Observational Learning and Motor Skills	293
12	Choice	328
Glo	ssary	359
Author Index		374
Subject Index		387

Detailed Contents

Preface About the Author	
1 History, Background, and Basic Concepts	1
The Search for General Principles of Learning	2
The Associationists Aristotle 4	4
Box 1.1 Applying the Research. A Demonstration of Free Association	5
The British Associationists: Simple and Complex Ideas 5	
Ebbinghaus's Experiments on Memory 8	
The Influence of the Associationists and Ebbinghaus 10	
Behavioral and Cognitive Approaches to Learning	11
The Use of Animal Subjects 11	
Ethical Issues and Animal Research 12	
The Emphasis on External Events 13	
Brain and Behavior	16
The Basic Characteristics of Neurons 16	
Simple Sensations 17	
Feature Detectors 19	
The Neuroscience of Learning 20	
Chemical Changes 20	
Growth of New Synapses 21	
Growth of New Neurons 22	
Where Are "Complex Ideas" Stored in the Brain? 22	
Summary	24
Review Questions	25
References	26

2	Innate Behavior Patterns and Habituation	29
	Characteristics of Goal-Directed Systems	30
	Reflexes	31
	Tropisms	32
	Kineses 32	
	Taxes 33	
	Sequences of Behavior	34
	Fixed Action Patterns 34	
	Reaction Chains 35	
	Innate Human Abilities and Predispositions	37
	Box 2.1 Spotlight on Research. We Have a Lot in Common: Human Universals	39
	Habituation	40
	General Principles of Habituation 42	
	Box 2.2 Spotlight on Research. Habituation and Psychological Functioning	44
	Neural Mechanisms of Habituation 44	
	Habituation in Emotional Responses: The Opponent-Process Theory 47	
	The Temporal Pattern of an Emotional Response 47	
	The a-Process and b-Process 49	
	The Effects of Repeated Stimulation 50	
	Other Emotional Reactions 50	
	A Brief Evaluation 51	
	Summary	52
	Review Questions	53
	References	53
2	Prois Deinsielles of Classical Conditioning	54
3	Basic Principles of Classical Conditioning	50
	Pavlov's Discovery and Its Impact	56
	The Standard Paradigm of Classical Conditioning 57	
	The Variety of Conditioned Responses 58	
	Eyeblink Conditioning 58	
	Conditioned Suppression 59	
	The Skin Conductance Response 59	
	Taste-Aversion Learning 60	
	Pavlov's Stimulus Substitution Theory 60	
	What Is Learned in Classical Conditioning? 61	
	Basic Conditioning Phenomena	63
	Acquisition 63	
	Extinction 64	
	Spontaneous Recovery, Disinhibition, and Rapid Reacquisition 64	
	Conditioned Inhibition 66	
	Generalization and Discrimination 67	
	Box 3.1 Spotlight on Research. Classical Conditioning and the Immune System	68
	The Importance of Timing in Classical Conditioning	69
	CS–US Correlations 71	
	Second-Order Conditioning	72
	Classical Conditioning Outside the Laboratory	73
	Classical Conditioning and Emotional Responses 73	
	Applications in Behavior Therapy 74	

	Systematic Desensitization for Phobias 74	
	Box 3.2 Applying the Research. Virtual Reality Therapy	75
	Aversive Counterconditioning 76	
	Treatment of Nocturnal Enuresis 78	
	Summary of the Classical Conditioning Therapies 78	
	Summary	79
	Review Questions	80
	References	80
4	Theories and Research on Classical Conditioning	84
	Research and Theories on Associative Learning	85
	The Blocking Effect 85	
	The Rescorla–Wagner Model 86	
	Acquisition 87	
	Blocking 88	
	Extinction and Conditioned Inhibition 88	
	Overshadowing 89	
	The Overexpectation Effect 89	
	Summary 91	
	Theories of Attention 91	
	Comparator Theories of Conditioning 92	
	Box 4.1 In the Media. Classical Conditioning in Advertising	93
	Neuroscience and Classical Conditioning	94
	Biological Constraints on Classical Conditioning	97
	The Contiguity Principle and Taste-Aversion Learning 98	
	Biological Preparedness in Taste-Aversion Learning 98	
	Box 4.2 Spotlight on Research Biological Preparedness in Human Learning	100
	Biological Constraints and the General-Principle Approach 101	
	The Form of the Conditioned Response	103
	Drug Tolerance and Drug Cravings as Conditioned Responses 103	100
	Conditioned Opponent Theories 106	
	Summary	107
	Beview Questions	107
	References	108
		100
5	Basic Principles of Operant Conditioning	113
	The Law of Effect	114
	Thorndike's Experiments 114	
	Guthrie and Horton: Evidence for a Mechanical Strengthening Process 115	
	Superstitious Behaviors 117	
	Box 5.1 In the Media. Superstitious Behaviors in Sports	119
	The Procedure of Shaping, or Successive Approximations	120
	Shaping Lever Pressing in a Rat 120	
	Shaping Behaviors in the Classroom 122	
	Shaping as a Tool in Behavior Modification 122	
	The Research of B. F. Skinner	124
	The Free Operant 124	
	The Three-Term Contingency 126	
	0 1	

	Basic Principles of Operant Conditioning 126	
	Conditioned Reinforcement 127	
	Response Chains 128	
	Box 5.2 Applying the Research. Teaching Response Chains	130
	Biological Constraints on Operant Conditioning	132
	Instinctive Drift 132	-
	Autoshaning 133	
	Autoshaping as Superstitious Behavior 133	
	Autoshaping as Classical Conditioning 134	
	Autoshaping as the Intrusion of Instinctive Behavior Patterns 135	
	Summary 136	
	Decouciling Deinforcement Theory and Biological Constraints 136	
	Keconcuring Keinjonement Theory and Diological Constraints 150	120
	Summary	130
	Review Questions	139
	References	139
6	Reinforcement Schedules: Experimental Analyses and Applications	142
	Platting Moment to Moment Behavior: The Cumulative Recorder	143
	The Four Simple Deinforcement Schedules	143
	Fixed Datio 114	177
	Variable Datio 146	
	Eised Literaal 147	
	Fixed Interval 147	
	Variable Interval 149	
	box 6.1 In the Media. The Scalloped Cumulative Record of the	1.40
	United States Congress	149
	Extinction and the Four Simple Schedules 151	
	Other Reinforcement Schedules 152	450
	Factors Affecting Performance on Reinforcement Schedules	152
	Behavioral Momentum 153	
	Contingency-Shaped Versus Rule-Governed Behaviors 154	
	The Experimental Analysis of Reinforcement Schedules	155
	Cause of the FR Postreinforcement Pause 156	
	Comparisons of VR and VI Response Rates 157	
	Applications of Operant Conditioning	159
	Teaching Language to Children With Autism 159	
	Token Reinforcement 161	
	Box 6.2 Applying the Research. Organizational Behavior Management	164
	Behavior Therapy for Marital Problems 165	
	Conclusions 166	
	Summary	167
	Review Questions	167
	References	168
7	Avoidance and Punishment	172
	Easens and Avaidance	174
	A Demonstrative Europiuseut 174	1/4
	A Representative Experiment 1/4	
	Iwo-Factor Theory 1/3	

One-Factor Theory 176	
Cognitive Theory 177	
Biological Constraints in Avoidance Learning 178	
Conclusions About the Theories of Avoidance 180	
Box 7.1 Applying the Research. The Procedure of Response Blocking (Flooding)	180
Learned Helplessness	181
Research on Punishment	183
Is Punishment the Opposite of Reinforcement? 183	
Factors Influencing the Effectiveness of Punishment 184	
Manner of Introduction 184	
Immediacy of Punishment 185	
Schedule of Punishment 185	
Motivation to Respond 185	
Reinforcement of Alternative Behaviors 186	
Punishment as Discriminative Stimulus 187	
Disadvantages of Using Punishment 187	
Negative Punishment (Omission) 188	
Behavior Decelerators in Behavior Therapy	189
Punishment 189	107
Box 7.2 In the Media Punishment Can Be Effective but Should	
It Be Used in Therapy?	190
Negative Punishment: Response Cost and Time-Out 191	170
Overcorrection 192	
Extinction 193	
Escane Extinction 193	
Resnanse Blacking 194	
Differential Reinforcement of Alternative Rehavior 195	
Stimulus Satiation 195	
Summary	196
Review Questions	197
References	197
References	177
Theories and Research on Operant Conditioning	201
	201
The Role of the Response	202
The Role of the Reinforcer	203
Is Reinforcement Necessary for Operant Conditioning? 203	
Can Reinforcement Control Visceral Responses? 204	
Biofeedback 206	207
Box 8.1 Applying the Research. Neurofeedback: Controlling Your Brain Waves	207
How Can We Predict What Will Be a Reinforcer?	209
Need Reduction 210	
Drive Reduction 210	
Irans-Situationality 211	
Premack's Principle 212	
Premack's Principle in Behavior Modification 215	
Response Deprivation Theory 216	
The Functional Analysis of Behaviors and Reinforcers 218	

8

	Behavioral Economics	220
	Optimization: Theory and Research 220	
	Optimization and Behavioral Ecology 221	
	Elasticity and Inelasticity of Demand 222	
	Box 8.2 Applying the Research Behavioral Economics and Drug Abuse	224
	Other Ambigations 225	221
	Summary	226
		220
	Review Questions	227
	References	227
9	Stimulus Control and Concept Learning	231
	Generalization Gradients	232
	Measuring Generalization Gradients 232	
	What Causes Generalization Gradients? 232	
	How Experience Affects the Shape of Generalization Gradients 233	
	How Sensory Deprivation Affects the Shape of Generalization Gradients 235	
	Is Stimulus Control Absolute or Relational?	236
	Transposition and Peak Shift 237	250
	Spance's Theory of Excitatory and Inhibitory Cradients 239	
	The Intermediate Size Drahlem 240	
	The Intermediate-Size Flooren 240 Other Data and Some Conclusions 240	
	Pahaviaral Contract	242
		242
	Errorless Discrimination Learning	244
	Box 9.1 Applying the Research. Errorless Learning in Education	246
	Concept Learning	247
	The Structure of Natural Categories 248	
	Animal Studies on Natural Concept Learning 249	
	Box 9.2 Spotlight on Research. Stimulus Equivalence Training	252
	Stimulus Control in Behavior Modification	253
	Study Habits and Health Habits 253	
	Insomnia 255	
	Summary	256
	Review Questions	257
	References	257
10	Comparative Cognition	261
10	Manager and Dalaceral	2(2
	Memory and Renearsal	262
	Short-Ierm Memory, or Working Memory 262	
	Delayed Matching to Sample 263	
	The Radial-Arm Maze 266	
	Rehearsal 267	
	Maintenance Rehearsal 268	
	Associative Rehearsal 269	
	Long-Term Memory, Retrieval, and Forgetting 270	
	Box 10.1 Spotlight on Research. Chunking of Information by Animals	272
	Timing and Counting	274
	Experiments on an "Internal Clock" 274	
	Counting 276	

	Animal Language	278
	Research With Chimpanzees 278	
	Research With Other Species 280	
	Some Conclusions 281	
	Reasoning by Animals	282
	Object Permanence 282	
	Analogies 283	
	Transitive Inference 284	
	Tool Use and Manufacture 285	
	Box 10.2 Spotlight on Research. Metacognition: Do Animals	
	Know What They Know?	286
	Conclusions	287
	Summary	287
	Review Questions	288
	References	288
11	Observational Learning and Motor Skills	293
	Theories of Imitation	294
	Imitation as an Instinct 294	
	Imitation as an Operant Response 296	
	Imitation as a Generalized Operant Response 296	
	Bandura's Theory of Imitation 298	
	Generalized Imitation Versus Bandura's Theory 300	
	Mirror Neurons and Imitation 300	
	Effects of the Mass Media	302
	Box 11.1 In the Media. The Effects of Video Games and Popular Music	303
	Modeling in Behavior Therapy	305
	Facilitation of Low-Probability Behaviors 305	
	Acquisition of New Behaviors 305	
	Elimination of Fears and Unwanted Behaviors 306	
	Video Self-Modeling 307	200
	Learning Motor Skills	308
	Variables Affecting Motor Learning and Performance 308	
	Reinforcement and Knowledge of Results 308	
	Knowledge of Performance 309	
	Distribution of Practice 511	
	Observational Learning of Motor Skills 312	
	Transfer From Previous Training 312	212
	I heories of Motor-Skill Learning	313
	Adams's Iwo-Stage Theory 313	
	Schmidt's Schema Theory 316	210
	Box 11.2 Applying the Research. What is the Best Way to Practice?	318
	Learning Movement Sequences	319
	The Kesponse Chain Approach 319	
	Motor Programs 319	200
	Summary	322
	Review Questions	323
	Keterences	323

XV

12	Choice	328
	The Matching Law	329
	Herrnstein's Experiment 329	
	Other Experiments on Matching 330	
	Deviations From Matching 331	
	Varying the Quality and Amount of Reinforcement 332	
	Matching and Reinforcement Relativity	333
	Theories of Choice Behavior	334
	Matching as an Explanatory Theory 334	
	Optimization Theory 335	
	Tests of Optimization Versus Matching 336	
	Momentary Maximization Theory 337	
	Box 12.1 Applying the Research. Can You Use a Momentary	338
	Self-Control Choices	340
	Box 12.2 Spotlight on Research. Measuring Delay Discounting	341
	The Ainslie–Rachlin Theory 342	
	Animal Studies on Self-Control 344	
	Factors Affecting Self-Control in Children 346	
	Techniques for Improving Self-Control 347	
	Other Choice Situations	349
	Risk Taking 349	
	The Tragedy of the Commons 350	
	Summary	353
	Review Questions	354
	References	354
Glo	ssary	359
Au	hor Index	374
Sub	ject Index	387

Preface

The purpose of this book is to introduce the reader to the branch of psychology that deals with how people and animals learn and how their behaviors are later changed as a result of this learning. This is a broad topic, for nearly all of our behaviors are influenced by prior learning experiences in some way. Because examples of learning and learned behaviors are so numerous, the goal of most psychologists in this field has been to discover general principles that are applicable to many different species and many different learning situations. What continues to impress and inspire me after many years in this field is that it is indeed possible to make such general statements about learning and behavior. This book describes some of the most important principles, theories, controversies, and experiments that have been produced by this branch of psychology in its first century.

This text is designed to be suitable for introductory or intermediate-level courses in learning, conditioning, or the experimental analysis of behavior. No prior knowledge of psychology is assumed, but the reading may be a bit easier for those who have had a course in introductory psychology. Many of the concepts and theories in this field are fairly abstract, and to make them more concrete and more relevant, I have included many real-world examples and analogies.

Roughly speaking, the book proceeds from the simple to the complex, with respect to both the difficulty of the material and the types of learning that are discussed. Chapter 1 discusses the behavioral approach to learning and contrasts it with the cognitive approach. It also describes some of the earliest theories about the learning process; then it presents some basic findings about the neural mechanisms of learning. Chapter 2 discusses innate behaviors and the simplest type of learning, habituation. Many of the terms and ideas introduced here reappear in later chapters on classical conditioning, operant conditioning, and motor-skills learning. The next two chapters deal with classical conditioning. Chapter 3 begins with basic principles and ends with some therapeutic applications. Chapter 4 describes more recent theoretical developments and experimental findings in this area.

The next three chapters discuss the various facets of operant conditioning: Chapter 5 covers the basic principles and terminology of positive reinforcement, Chapter 6 covers schedules of reinforcement and applications, and Chapter 7 covers negative reinforcement and punishment. Chapters 8 and 9 have a more theoretical orientation. Chapter 8 presents differing views on such fundamental questions as what constitutes a reinforcer and what conditions are necessary for learning to occur. Chapter 9 takes a more thorough look at generalization and discrimination, and it also examines research on concept learning.

Chapter 10 surveys a wide range of findings in the rapidly growing area of comparative cognition. Chapter 11 discusses two types of learning that are given little or no emphasis in

many texts on learning—observational learning and motor-skills learning. A substantial portion of human learning involves either observation or the development of new motor skills. Readers might well be puzzled or disappointed (with some justification) with a text on learning that includes no mention of these topics. Finally, Chapter 12 presents an overview of behavioral research on choice.

This book includes a number of learning aids for students. Each chapter begins with a list of learning objectives and ends with a summary of the main points covered. Each chapter also includes practice quizzes and review questions to help students determine if they are learning and understanding the key points. The book also includes a glossary of all important terms. The website for this text has a number of additional resources. For instructors, there is a test bank of multiple-choice and short-essay questions, PowerPoint slides for use in class, and Internet resources. For students, there are online quizzes for each chapter, definitions of key terms, chapter outlines, and Internet links related to many of the topics covered in the text.

New to this eighth edition are boxes in each chapter that highlight topics that should be of special interest to students. The boxes are focused on three themes: *In the Media*, covering topics related to learning and behavior that have been covered by various media sources, *Spotlight on Research*, taking a closer look at current research on specific topics, and *Applying the Research*, presenting real-world applications of the principles described in the text. This edition also includes many new figures and illustrations to help students understand and remember important concepts, principles, experimental procedures, and applications. To enhance the relevance of this material for today's students, a number of older and somewhat technical topics from previous editions have been removed, and there are more examples of how behavioral and cognitive principles of learning can be observed in people's everyday behaviors. Most of the chapters include sections that describe how the theories and principles of learning have been used in the applied field of behavior modification.

I owe thanks to many people for the help they have given me as I wrote this book. Many of my thoughts about learning and about psychology in general were shaped by my discussions with the late Richard Herrnstein—my teacher, advisor, and friend. I am most grateful to Debra Riegert and Rachel Severinovsky of Taylor and Francis for all the advice and assistance they provided me throughout the work on this edition. Thanks go to the reviewers of various editions of this book:

Matthew C. Bell, Mark Branch, Thomas Brown, Maureen Bullock, Gary Brosvic, Valerie Farmer-Dougan, April Fugett, Adam Goodie, Kenneth P. Hillner, Peter Holland, Ann Kelley, Melinda Leonard, Kathleen McCartney, Harold L. Miller, Jr., David Mostofsky, Thomas Moye, Jack Nation, Erin Rasmussen, David Schaal, James R. Sutterer, Edward Wasserman, Steve Weinert, and Joseph Wister. In addition, I thank Marge Averill, Stan Averill, John Bailey, Chris Berry, Paul Carroll, David Coe, David Cook, Susan Herrnstein, Margaret Makepeace, Margaret Nygren, Steven Pratt, and James Roach for their competent and cheerful help on different editions of this book. Finally, I thank my wife, Laurie Averill, who drew many of the illustrations and gave me plenty of valuable help on this and previous editions.

J. E. M.

About the Author

James E. Mazur obtained his B.A. in Psychology from Dartmouth College in 1973 and his Ph.D. in Experimental Psychology from Harvard University in 1977. He taught at Harvard as an assistant professor and associate professor from 1980 to 1988, and since then he has taught at Southern Connecticut State University, where he was honored with the title of CSU Professor in 2010. He is now Professor Emeritus and continues to teach part-time. He has conducted research on operant conditioning and choice for over 40 years. He has been a reviewer and associate editor for several journals, and he served as editor for the *Journal of the Experimental Analysis of Behavior*. He has published numerous journal articles and chapters on such topics as reinforcement schedules, conditioned reinforcement, self-control, risk taking, procrastination, and mathematical models of choice.

CHAPTER 1

History, Background, and Basic Concepts

Learning Objectives

After reading this chapter, you should be able to

- describe the early theories of memory proposed by the Associationists and the early memory studies of Hermann Ebbinghaus
- explain the behavioral and cognitive approaches to studying learning and how they differ
- explain the advantages and disadvantages of using animals in psychological research
- discuss intervening variables and the debate over whether they should be used in psychology
- explain how our sensory receptors respond to "simple sensations" and how feature detectors in the visual system respond to more complex patterns
- list three main types of changes that can take place in the brain as a result of a learning experience, and present evidence for each type

If you know nothing about the branch of psychology called *learning*, you may have some misconceptions about the scope of this field. I can recall browsing through the course catalog as a college freshman and coming across a course offered by the Department of Psychology with the succinct title "Learning." Without bothering to read the course description, I wondered about the contents of this course. Learning, I reasoned, is primarily the occupation of students. Would this course teach students better study habits, better reading, and better note-taking skills? Or did the course examine learning in children, covering such topics as the best ways to teach a child to read, to write, to do arithmetic? Did it deal with children

who have learning disabilities? It was difficult to imagine spending an entire semester on these topics, which sounded fairly narrow and specialized for an introductory-level course.

My conception of the psychology of learning was wrong in several respects. First, a psychology course emphasizing learning in the classroom would probably have a title such as "Educational Psychology" rather than "Learning." My second error was the assumption that the psychology of learning is a narrow field. A moment's reflection reveals that students do not have a monopoly on learning. Children learn a great deal before ever entering a classroom, and adults must continue to adapt to an ever-changing environment. Because learning occurs at all ages, the psychological discipline of learning places no special emphasis on classroom learning. Furthermore, since the human being is only one of thousands of species on this planet that have the capacity to learn, the psychological discipline of learning is by no means restricted to the study of human beings. For reasons to be explained, a large percentage of all psychological experiments on learning have used nonhuman subjects. Though they may have their faults, psychologists in the field of learning are not chauvinistic about the human species.

Although even specialists have difficulty defining the term *learning* precisely, most would agree that it is a process of change that occurs as a result of an individual's experience. Psychologists who study learning are interested in this process wherever it occurs—in adults, school children, other mammals, reptiles, and even insects. This may sound like a large subject, but the field of learning is even broader than this because psychologists study not only the *process* of learning but also the *product* of learning—the long-term changes in one's behavior that result from a learning experience.

An example may help to clarify the distinction between process and product. Suppose you glance out the window and see a raccoon near some garbage cans in the backyard. As you watch, the raccoon gradually manages to knock over a garbage can, remove the lid, and tear open the garbage bag inside. If we wanted to study this raccoon's behavior, many different questions would probably come to mind. Some questions might deal with the learning process itself: Did the animal open the can purely by accident, or was it guided by some "plan of action"? What factors determine how long the raccoon will persist in manipulating the garbage can if it is not immediately successful in obtaining something to eat? These questions deal with what might be called the **acquisition** phase, or the period in which the animal is acquiring a new skill.

Once the raccoon has become skillful at opening garbage cans, we can ask questions about its long-term performance. How frequently will the raccoon visit a given backyard, and how will the animal's success or failure affect the frequency of its visits? Will its visits occur at the most advantageous times of the day or week? Such questions concern the end product of the learning process, the raccoon's new behavior patterns. This text is entitled *Learning and Behavior*, rather than simply *Learning*, to reflect the fact that the psychology of learning encompasses both the acquisition process and the long-term behavior that results.

THE SEARCH FOR GENERAL PRINCIPLES OF LEARNING

Because the psychology of learning deals with all types of learning and learned behaviors in all types of creatures, its scope is broad indeed. Think, for a moment, of the different behaviors you performed in the first hour or two after rising this morning. How many of those behaviors would not have been possible without prior learning? In most cases, the decision is easy to make. Getting dressed, washing your face, making your bed, and going to the dining room for breakfast are all examples of behaviors that depend mostly or entirely on previous learning experiences. The behavior of eating breakfast depends on several different types of learning, including the selection of appropriate types and quantities of food, the proper use of utensils, and the development of coordinated hand, eye, and mouth movements. It is hard to think of human behaviors that do not depend on prior learning.

Considering all of the behaviors of humans and other creatures that involve learning, the scope of this branch of psychology may seem hopelessly broad. How can any single discipline hope to make any useful statements about all these different instances of learning? It would make no sense to study, one by one, every different example of learning that a person might come across, and this is not the approach of most researchers who study learning. Instead, their strategy has been to select a relatively small number of learning situations, study them in detail, and then try to generalize from these situations to other instances of learning. Therefore, the goal of much of the research on learning has been to develop general principles that are applicable across a wide range of species and learning situations.

B. F. Skinner, one of the most influential figures in the history of psychology, made his belief in this strategy explicit in his first major work, *The Behavior of Organisms* (1938). In his initial studies, Skinner chose white rats as subjects and lever pressing as a response. An individual rat would be placed in a small experimental chamber containing little more than a lever and a tray into which food was occasionally presented after the rat pressed the lever. A modern version of such a chamber is shown in Figure 1.1. In studying the behavior of

Figure 1.1 An experimental chamber in which a rat can receive food pellets by pressing a lever.

rats in such a sparse environment, Skinner felt that he could discover principles that govern the behavior of many animals, including human beings, in the more complex environments found outside the psychological laboratory. The work of Skinner and his students will be examined in depth beginning in Chapter 5, so you will have the opportunity to decide for yourself whether Skinner's strategy has proven to be successful.

Attempts to discover principles or laws with wide applicability are a part of most scientific endeavors. For example, a general principle in physics is the law of gravity, which predicts, among other things, the distance a freely falling object will drop in a given period of time. If an object starts from a stationary position and falls for t seconds, the equation $d = 16t^2$ predicts the distance (in feet) that the object will fall. The law of gravity is certainly a general principle because in theory it applies to any falling object, whether a rock, a baseball, or a skydiver. Nevertheless, the law of gravity has its limitations. As with most scientific principles, it is applicable only when certain criteria are met. Two restrictions on the equation are that it applies (1) only to objects close to the earth's surface and (2) only as long as no other force, such as air resistance, plays a role. Therefore, the law of gravity can be more accurately studied in the laboratory, where the role of air resistance can be minimized through the use of a vacuum chamber. For similar reasons, principles of learning and behavior are often best studied in a laboratory environment. Every chapter in this book will introduce several new principles of learning and behavior, nearly all of which have been investigated in laboratory settings. To demonstrate that these principles have applicability to more natural settings, each chapter will also describe real-world situations in which these principles play an important role.

Within the field of psychology, researchers have studied the topic of learning in several different ways. The remainder of this chapter gives an overview of these different approaches, plus a brief history of the field and some background information that will help you to understand the topics covered in later chapters. We will begin with some of the earliest recorded thoughts about learning and memory, and then we will examine and compare two modern approaches to learning—the behavioral and cognitive approaches. Finally, this chapter will introduce a third approach to studying learning—the neuroscience approach—which examines what happens in the brain and in individual nerve cells when we learn.

THE ASSOCIATIONISTS

Aristotle

The Greek philosopher Aristotle (c. 350 B.C.) is generally acknowledged to be the first **Associationist**. He proposed three principles of association that can be viewed as an elementary theory of memory. Aristotle suggested that these principles describe how one thought leads to another. Before reading about Aristotle's principles, you can try something Aristotle never did: You can conduct a simple experiment to test these principles. Before reading further, take a few moments to try the demonstration in Box 1.1.

Aristotle's first principle of association was **contiguity**: The more closely together (contiguous) in space or time two items occur, the more likely will the thought of one item lead to the thought of the other. For example, the response *chair* to the word *table* illustrates association by spatial contiguity since the two items are often found close together. The

BOX 1.1 APPLYING THE RESEARCH

A Demonstration of Free Association

This exercise, which should take only a minute or two, can be called a study of free association. Take a piece of paper and a pencil, and write numbers 1 through 12 in a column down the left side of the paper. Below is a list of words also numbered 1 through 12. Reading one word at a time, write down the first one or two words that come to mind.

- 1. apple
- 2. night
- 3. thunder
- 4. bread
- 5. chair
- 6. bat
- 7. girl
- 8. dentist
- 9. quiet
- 10. sunset
- 11. elephant
- 12. blue

Once you have your list of responses to the 12 words, look over your answers and try to develop some rules that describe how you came up with your responses. Can you guess any of Aristotle's three principles?

response *lightning* to the word *thunder* is an example of association by temporal contiguity. Other examples of association by contiguity are *bread-butter* and *dentist-pain*.

Aristotle's other two principles of association were **similarity** and **contrast**. He stated that the thought of one concept often leads to the thought of similar concepts. Examples of association by similarity are *apple-orange* or *blue-green*. By the principle of contrast, Aristotle meant that an item often leads to the thought of its opposite (e.g., *night-day, girl-boy, sunset-sunrise*). Most people who try this simple free-association experiment conclude that Aristotle's principles of association have both strengths and weaknesses. His list of factors that affect the train of thought seems incomplete, but it is not bad as a first step in the development of a theory about the relationship between experience and memory.

The British Associationists: Simple and Complex Ideas

For some philosophers who wrote about Associationism several centuries after Aristotle, this topic assumed a much greater significance: Associationism was seen as a theory of all knowledge. The **British Associationists** included John Locke (1690), James Mill (1829), and John Stuart Mill (1843). These writers are also called Empiricists because of their belief that every person acquires all knowledge empirically, that is, through experience. This viewpoint is typified by John Locke's statement that the mind of a newborn child is a *tabula rasa* (a blank slate) onto which experiences make their marks. The Empiricists believed that every memory, every idea, and every concept a person has is based on previous experiences.

The opposite of **Empiricism** is **Nativism**, or the position that some ideas are innate and do not depend on an individual's past experience. For instance, Immanuel Kant (1781) believed that the concepts of space and time are inborn and that through experience new concepts are built on the foundation of these original, innate concepts. As we will see many times throughout this book, modern research has uncovered numerous examples that support Nativism and contradict the extreme Empiricist position that all knowledge is learned through experience. Nevertheless, we can grant that some concepts are innate, but many concepts are developed through experience.

The British Empiricists offered some hypotheses both about how old concepts become associated in memory and about how new concepts are formed. According to the Associationists, there is a direct correspondence between experience and memory. Experience consists of sensations, and memory consists of ideas. Furthermore, any sensory experience can be broken down into simple sensations. For instance, if a person observes a red box-shaped object, this might be broken down into two simple sensations: *red* and *rectangular*. Later, the person's memory of this experience would consist of the two corresponding simple ideas of *red* and *rectangular* (see Figure 1.2a). A simple idea was said to be a sort of faint replica of the simple sensation from which it arose.

Now suppose that the person repeatedly encounters such a red box-shaped object. Through the principle of contiguity, an association should develop between the ideas of *red* and *rectangle*, as shown in Figure 1.2b. Once such an association is formed, if the person experiences the color red, this will not only invoke the idea of red, but by virtue of the association the idea of rectangular will be invoked as well (Figure 1.2c).

Of course, the Associationists realized that many of our concepts are more complex than the simple ideas of *red*, *rectangular*, *thunder*, and *lightning*. In an attempt to come to grips with the full range of memories and knowledge that all people have, some Associationists speculated about the formation of complex ideas. James Mill (1829) proposed that if two or more simple sensations are repeatedly presented together, a product of their union may be a **complex idea**. For instance, if the sensations *red* and *rectangular* occur together repeatedly, a new, complex idea of *brick* may form. Figure 1.2d shows one way to depict Mill's hypothesis graphically. Once such a complex idea is formed, it can also be evoked by the process of association when the sensation of either *red* or *rectangle* occurs. Mill went on to say that complex ideas could themselves combine to form larger **duplex ideas**. In the following passage, Mill (1829) describes the formation of a hierarchy of ideas of increasing complexity:

Some of the most familiar objects with which we are acquainted furnish instances of these unions of complex and duplex ideas. Brick is one complex idea, mortar is another complex idea; these ideas, with ideas of position and quantity, compose my idea of a wall. . . . In the same manner my complex idea of glass, and wood, and others, compose my duplex idea of a window; and these duplex ideas, united together, compose my idea of a house, which is made up of various duplex ideas.

(pp. 114-116)

Figure 1.2 Some principles of Associationism. (a) One-to-one correspondence between simple sensations and simple ideas. (b) After repeated pairings of the two sensations, an association forms between their respective ideas. (c) Once an association is formed, presenting one stimulus will activate the ideas of both. (d) With enough pairings of two simple ideas, a complex idea encompassing both simple ideas is formed. The complex idea may now be evoked if either of the simple stimuli is presented.

There are both strengths and weaknesses in this hypothesis. Some types of learning do seem to progress from simple to complex concepts. For example, only after children understand the concepts of *addition* and *repetition* are they taught the more complex concept of *multiplication*, and it is often introduced as a procedure for performing repeated additions. However, other concepts do not seem to follow as nicely from Mill's theory, including his own example of the concept of *house*. A 2-year-old may know the word *house* and use it appropriately without knowing the "simpler" concepts of *mortar*, *ceiling*, or *rafter*. With *house* and many other complex concepts, people seem to develop at least a crude idea of the entire concept before learning all of the components of the concept, although according to Mill's theory this should not be possible. Thus, although it appears to have validity in some cases, Mill's theory is at best incomplete.

Another Associationist, Thomas Brown (1820), tried to expand Aristotle's list by adding some additional principles. For example, he proposed that the *length of time* two sensations

coexist determines the strength of the association, and the *liveliness* or vividness of the sensations also affects the strength of the association. According to Brown, intense stimuli or emotional events will be more easily associated and better remembered. He also proposed that a stronger association will also occur if the two sensations have been paired *frequently* or if they have been paired *recently*.

The ideas of the Associationists can be called the earliest theories of learning, for they attempted to explain how people change as a result of their experiences. However, the Associationists never conducted any experiments to test their ideas. In retrospect, it is remarkable that despite an interest in principles of learning spanning some 2,000 years, no systematic experiments on learning were conducted until the end of the nineteenth century. This absence of research of learning was not a result of technological deficiencies because the first experiments on learning were so simple that they could have been performed centuries earlier.

Ebbinghaus's Experiments on Memory

Hermann Ebbinghaus (1885) was the first to put the Associationists' principles to an experimental test. In his memory experiments, Ebbinghaus served as his own subject. This is not an acceptable arrangement by modern standards because his performance could have been biased by his expectations. Yet despite this potential problem, all of his major findings have been replicated by later researchers using modern research procedures.

To avoid using stimuli that had preexisting associations (such as *coffee-hot*), Ebbinghaus invented the *nonsense syllable*—a meaningless syllable consisting of two consonants separated by a vowel (e.g., HAQ, PIF, ZOD). He would read a list of nonsense syllables out loud at a steady pace, over and over. Periodically, he would test his memory by trying to recite the list by heart, and he would record the number of repetitions needed for one perfect recitation. He then might allow some time to pass and then try to learn the list to perfection a second time, again recording how many repetitions needed. He could then calculate his *savings*—the decrease in the number of repetitions needed to relearn the list. For example, if he needed 20 repetitions to learn a list the first time, but only 15 repetitions to relearn the list at a later time, this was a savings of 5 repetitions, or 25%.

A few examples will show how Ebbinghaus tested the Associationists' principles. One of Thomas Brown's principles was that the frequency of pairings affects the strength of an association. Obviously, this principle is supported by the simple fact that with enough repetitions Ebbinghaus could learn even long lists of nonsense syllables. However, one of Ebbinghaus's findings provided additional support for the frequency principle. If he continued to study a list beyond the point of one perfect recitation (e.g., for an additional 10 or 20 repetitions), his savings after 24 hours increased substantially. In other words, even after he appeared to have perfectly mastered a list, additional study produced better performance in a delayed test. Continuing to practice after performance is apparently perfect is called **overlearning**, and Ebbinghaus demonstrated that Brown's principle of frequency applies to periods of overlearning as well as to periods in which there is visible improvement during practice.

Another of Thomas Brown's principles was recency: The more recently two items have been paired, the stronger will be the association between them. Ebbinghaus tested this principle by varying the length of time that elapsed between his study and test periods. As shown

Figure 1.3 Ebbinghaus's forgetting curve. The percentage savings is shown for various time intervals between his initial learning and relearning of lists of nonsense syllables. (After Ebbinghaus, 1885)

in Figure 1.3, he examined intervals as short as 20 minutes and as long as 1 month. This graph is an example of a **forgetting curve**, for it shows how the passage of time has a detrimental effect on performance in a memory task. The curve shows that forgetting is rapid immediately after a study period, but the rate of additional forgetting slows as more time passes. The shape of this curve is similar to the forgetting curves obtained by later researchers in numerous experiments with both humans and animals, although the time scale on the x-axis varies greatly, depending on the nature of the task and the species of the subjects. Forgetting curves of this type provide strong confirmation of Brown's principle of recency.

A final example will show how Ebbinghaus tested Aristotle's principle of contiguity. He reasoned the strongest associations in his lists should be between adjacent syllables, but there should also be measurable (though weaker) associations between nonadjacent items. He devised an ingenious method for testing this idea, which involved rearranging the items in a list after they were memorized and then learning the rearranged list. His technique is illustrated in Table 1.1.

The designations I1 through I16 refer to the 16 items as they were ordered in the original list (List 0). Once this list is memorized, there should be a strong association between I1 and I2, a somewhat weaker association between I1 and I3 (since these were separated by one item in the original list), a still weaker association between I1 and I4, and so on. There should be similar gradations in strength of association between every other item and its neighbors.

The rearranged list, called List 1 in Table 1.1, was used to test for associations between items one syllable apart. Notice that every adjacent item in List 1 was separated by one syllable in the original list. If there is any association between I1 and I3, between I3 and I5, and so on, then List 1 should be easier to learn than a totally new list. In a similar fashion, List 2